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1 Introduction

As with the New York City blackout of 1965, the Oklahoma City bombing of 1995,

and the terrorist attacks of September 11, 2001, the press have reported increased

birth rates nine months after tropical storms and hurricanes. Pedicini (June 7, 2005)

reported in the Orlando Sentinel what was reported by multiple other news agencies—

that the storms that hit Florida during the 2004 hurricane season had generated a

baby boom. However, until recently, the results of studies trying to measure these

effects have been mixed.1 Our aim in this study is to quantify the fertility effect of

catastrophes using U.S. storm advisory data from 1995 to 2001 and U.S. birth data

from 1996 to 2002.2

In our study, we choose to try to measure the fertility effect of catastrophe using

storm advisory data.3 U.S. storm advisory data represent a time series of multiple-

severity exogenous shocks that influence a large number of Atlantic and Gulf Coast

counties for which we have detailed birth data. Using our rich storm advisory data

in combination with U.S. county birth data, we are able to more accurately estimate

the fertility effect of these weather catastrophes.

The uniqueness of this study is its use of exogenous storm advisory shocks over

a significant time period, its large sample area of U.S. counties, and the variation in

severity of the shocks. Until recently, previous attempts to measure the fertility effect

of a catastrophe have carried out only single-shock experiments observed in a single

area (usually one county or city), so that they observe no variations in catastrophe

severity or frequency. The data we use here not only allow us to study the impact of

catastrophe on fertility, but also enable us to characterize the relationship between

fertility levels and catastrophe severity.

1Udry (1970) finds no effect from 1965 New York City blackout but Rodgers, St. John, and
Coleman (2005) find positive effect after Oklahoma City bombing.

2Studying different effects of hurricane impacts has attracted some attention in economics re-
cently. Belasen and Polachek (2007) study the impact of hurricanes on local labor markets in
Florida. Pörtner (2006) examines the interaction between hurricane risk and shocks, fertility, and
education outcomes in developing countries. And Yang (2006) investigates the impact of hurricanes
on international capital flows.

3We discuss in detail the reasons why we choose to use storm advisories instead of actual landfalls
in Section 4.1.
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Our main findings are that low-severity storm advisories are associated a positive

and significant fertility effect and that high-severity advisories have a significant neg-

ative fertility effect. As the type of advisory goes from least severe to most severe,

the fertility effect of the specific advisory type decreases monotonically from positive

to negative. We also find that most of the changes in fertility resulting from storm

advisories come from couples who have had at least one child already. In addition

to our short-term effect estimation, we also test the effects of storm advisories on

long run fertility. Our results provide slight evidence that the highest severity storm

advisories have a permanent negative fertility effect.

The paper is organized as follows. Section 2 briefly reviews the relevant literature,

Section 3 discusses related theories and channels through which storm advisories could

affect fertility, Section 4 describes the data used in the paper, Section 5 presents the

empirical results, and Section 6 concludes.

2 Literature

The seminal empirical paper in this literature is Udry (1970). He studied the great

New York City blackout of November 9, 1965, in which the city lost electrical power

for as long as 10 hours in some areas. Nine months after the power outage, Tolchin

(August 10, 1966) reported in The New York Times that several local hospitals had

experienced record high single-day births—in some cases, more than doubling the

number of births on that day in the previous year.

Using daily number of births data from the New York City Health Department for

the years 1961 to 1966, Udry (1970) assumed that 90 percent of babies conceived on

the date of the blackout would be born within a roughly three-week range centered

266 days (38 weeks) from the date of the blackout. Calculating the mean births for

each day in the same three-week period in the previous five years, Udry found that

the increase in New York City births nine months after the blackout were not more

than two standard deviations greater than the mean daily value of previous years

on any given day. Using this simplistic procedure with no controls and a very small
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sample size (five observations), he concluded that there was no positive fertility effect

resulting from the blackout.

A more recent study by Rodgers, St. John, and Coleman (2005) is a step forward

because they look at more extensive time series data for a number of counties con-

trolling for county and time specific characteristics. They estimate the effect of the

Oklahoma City bombing on fertility rates in the surrounding counties. They find

a positive fertility effect for the area immediately surrounding Oklahoma City nine

months after the bombing.4

The primary weakness of the studies by Udry (1970) and Rodgers, St. John, and

Coleman (2005) is that they only have one shock and, therefore, have no variance in

the frequency or severity of the shock.

Lindstrom and Berhanu (1999) study the impact of war and famine on marital

fertility in Ethiopia. They find strong evidence of short-term fertility decrease af-

ter famine, war, or economic upheaval. The events examined in their paper are more

likely to be permanent or long-term shock compared with the storm advisories studied

here. For example, Belasen and Polachek (2007) find that the the effect of hurricane

shocks on growth rates of earnings are temporary, and the effects last roughly two

years. It is interesting that they find a hurricane stricken region experiences a posi-

tive earnings growth, while its nearby unafflicted regions experience negative growth.

They rationalize this finding on the grounds that a hurricane stricken region will have

a negative labor supply shock after the hurricane since people will flee to unaffect

regions, and this outflow of people will create a positive labor supply shock for the

nearby unafflicted regions.

Among the studies by economists, Pörtner (2006) is the closest one to our work.

He studies how educational level and fertility behavior respond to hurricane risk and

shocks in Guatemala over the last 120 years. His main focus is on using education and

fertility decisions as insurance strategies when households face risk and shocks. He

4The idea of the fertility rate increasing during periods in which individuals’ expectations about
the future become less certain has been addressed in the demographic, economics and sociological
literature. Examples include Cain (1981), Cain (1983), and Pörtner (2001) among others. Robinson
(1986) refers to this phenomenon as the “risk insurance hypothesis,” and it is commonly used to
explain why poorer countries have higher birth rates.
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concludes that while hurricane risk leads to an increase in fertility, actual hurricane

shocks result in a decrease in fertility. But his sample is developing countries instead

of developed economies and focuses more on long-term fertility effects.

3 Theory and Channels

Regarding theoretical explanations for a fertility effect of storm advisories, economics

has many models to explain fertility behavior. The static models include the quality-

quantity model of Becker (1960) and the time allocation model of Mincer (1963). The

life-cycle models, such as Hotz and Miller (1985), Moffitt (1984a), and Rosenzweig

and Schultz (1985), characterize the the optimal number of births and their optimal

timing. Becker and Barro (1988) go a step further and formulate a dynastic model

that explains fertility rates and capital accumulation across generations.5

Several channels exist through which storm advisories could affect fertility.6 The

first channel is how individuals allocate time immediately after the weather service

issues an advisory. And one might expect individuals to behave differently according

to the severity of a advisory. During a low-level advisory, people might spend more

time at home, leading to more sexual activity because the opportunity cost of time

is lower. During a high-level advisory, the opportunity cost of time increases and

individuals are more likely to be occupied by other precautionary activities, such as

shopping for necessities and covering the windows with plywood. This will lead to

less sexual activity.

Indeed, the National Oceanic and Atmospheric Administration (2007), or NOAA,

has prepared a document that informs coastal residents what to do in the case of

each level of storm advisory. Regarding the lower severity storm watches, the NOAA

advises coastal residents to frequently listen to the TV and radio for warnings and to

5See Hotz, Klerman, and Willis (1997) and Schultz (1997) for extensive reviews of theoretical
fertility models as well as empirical studies on developed and developing countries.

6The most relevant theoretical predictions to our paper are those from life-cycle models which
predict the optimal timing of first births and optimal spacing of births. In this paper, we estimate
the reduced form effects of storm advisories on fertility. The theories outlined here are used as
guidance to interpret our empirical results, and we do not intend to formulate or to estimate a
structural life-cycle model, such as Moffitt (1984b) and Wolpin (1984).
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stock up on supplies. Except in the case of individuals who live in mobile homes or

on islands, the listed precautions for watches mainly deal with what to have ready

in order to ride out a storm at a coastal residence. However, the instructions for the

more severe storm warnings mainly deal with being ready to evacuate if notified.

The second channel is contraceptive choice during an advisory. When the people

decide to engage in sexual relationships, there is a probability that the usual contra-

ceptive methods will not be readily available at home. During a low-level advisory,

going out to buy a contraceptive is relatively costly due to the risk of an incoming

hurricane. This could lead to more unplanned births.7 During a high-level advisory,

people will go out shopping for necessities anyway, so the cost of getting contraceptives

is relatively low. This will reduce the cases of accidental conception.

A third channel through which storm advisories can affect fertility is the optimal

timing and spacing of births. Parents facing a high-level advisory, on the one hand,

may rationalize that their time in the near future will likely become more valuable

in the aftermath of a hurricane due to the probably needs of rebuilding. So the

opportunity cost of time spent on childbearing relative to other competing activities

is high. In this case, the marginal utility of the mother’s time in other activities is

likely to exceed the marginal utility from having a new baby. On the other hand,

parents may also think their future flow of earnings will become more uncertain in

the aftermath of a hurricane, and they need more time to save enough to finance

the increased costs of rearing a child. Both effects will lead to parents postpone

childbearing, and a high-level advisory will exhibit a negative impact on short-term

fertility.8 It is worth pointing out that if the hurricane stricken region experiences a

rising earnings growth rate after the storm as in Belasen and Polachek (2007), the

parents will be more likely to increase the time between their births.9

Whether storm advisories have a permanent impact on lifetime fertility will de-

pend on how an advisory changes key long-term factors such as the parents’ taste for

7However, people can still plan their birth through abortion after the advisory, though at a much
high cost.

8See Hotz, Klerman, and Willis (1997). A low-level advisory is unlikely to have the implications
described in this paragraph due to its low severity nature and its small economic impact.

9See Heckman and Willis (1975) and Wolpin (1984).
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children or the parents’ life-cycle earnings profiles. If the earnings shock and relative

price change resulting from a storm advisory are temporal, the fertility effect will only

shift the timing of births but will not change lifetime fertility.10

4 Data

Our data can be divided into three categories—storm advisory data, birth data, and

population data. In this section, we describe the data from these categories and then

detail how we put them together in order to estimate the fertility effect of storm

advisories.

Our sample size of counties gets pared down from 164 to 47 due to the requirement

of our analyses to have all three categories of data for a given county. The storm

advisory data covers 164 U.S. Atlantic Coast and Gulf Coast counties. Of the 164

coastal counties for which we have storm data, only 84 have birth data as well. And

only 47 of the 84 counties that have both storm and birth data have population data

as well. So our final sample of counties will be 47.

4.1 Storm advisory data

The storm advisory data come from the National Hurricane Center (NHC) of the

United States National Weather Service (NWS).11 Included is information on the

name of each storm, its duration, as well as a history of the official NWS advisories

associated with each storm and their respective durations and locations. We use

storm advisories from the period of 1995 to 2001 because 1995 is the earliest year of

easily available storm data and our most recent year of birth data is 2002. The storm

advisory data and their collection are detailed more explicitly in Appendix A-1. As

very few Pacific storms ever reach the western coast of the United States, we focus

on storms in the Atlantic and Gulf Coasts of the United States. Our storm advisory

data cover 164 Atlantic and Gulf Coast counties. Our first decision regarding how to

10See Hotz, Klerman, and Willis (1997).
11The data are available from the NHC web site at http://www.nhc.noaa.gov/pastall.shtml.
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use the storm data was whether to use actual storm landfalls or whether to use storm

advisories. We chose storm advisories for a number of reasons.

Our first reason for using the storm advisory data is that we think that the infor-

mation individuals first react to is the announcement of official hurricane projections

and advisories.12 Because of the ability of the U.S. National Weather Service to give

advanced warnings of an impending storm along with probabilities of a hit as well

as the expected severity of the hit, individuals begin changing behavior days before

a storm actually makes landfall. In fact, a storm will often change direction in such

a way as to not ever affect an area that had previously been under advisory. But

because a warning was issued, grocery store shelves still will have been cleared of

their goods and windows will have been covered with plywood. If any fertility ef-

fect of catastrophe exists with regard to storm advisories, its effects at least begin

in the time before the storm actually hits and are driven by a change in the level of

uncertainty about the future. Once the storm has either missed an area or caused

some devastation in an area, life either goes back to normal or people’s efforts get

focused in directions that may continue to affect their fertility decisions. We assume

that how strong a storm is when it makes landfall and which specific areas it hits are

fairly random events conditioning on the forecasting. For this reason, we focus on the

storm advisory data from the NHC and not the force and location of actual hits.

The second reason is that the actual hurricane landfall data only include the

path of the eye of the storm in terms of latitude and longitude and selected location

severity measurements. So using the actual storm landfall data as a determinant of

births nine-months later would force us to make some ad hoc decisions about what

area was affected by the given storm hit and whether the affected area had a constant

storm severity moving outward from the eye. But the storm advisory data include

a complete listing of the severity of the advisory, the exact duration for which the

advisory was in effect (in minutes), and the exact coastal boundaries of the area to

12Conceptually, this focus on warnings and projections rather than actual hurricane hits is sim-
ilar to the choice in macroeconomic modeling of using real-time data (forecasts) instead of revised
(actual) data. The forecast data is what individuals have at that moment in time and upon which
they base their decisions, whereas the revised data is only available after the fact. A good reference
in this literature is Orphanides (2001).
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which the advisory applied.

Lastly, the NHC’s careful definition of advisory severity is also a major advantage

of using the advisory data over the actual landfall data. The NHC defines its four

levels of storm advisories as listed in Table 1. They are tropical storm watch, hurricane

watch, tropical storm warning, and hurricane warning.

As shown in Figure 1, these storm advisory categories can be ranked in severity

along two dimensions: storm severity and probability of a storm hit. Knowing how

these levels of advisories relate to each other in terms of severity is important in

order to be able to interpret any results we get on estimated fertility effects of these

advisories. It is clear that the lowest level advisory is a tropical storm watch, as it

has the lowest severity storm type and storm probability. It is also clear that the

highest level advisory is a hurricane warning as it has the highest severity storm type

and storm probability.

However, it is not obvious which is the more severe advisory out of a tropical

storm warning and a hurricane watch. A tropical storm warning has the lower storm

type with a higher probability of a hit, while the hurricane watch has the higher storm

type with a lower probability of a hit. Table 2 provides some evidence as to how these

advisories should be ordered in severity. A county may be under some type of storm

advisory for a continuous period of time. But, during that time, the specific types of

storm advisory may change. For example, if a county spent one hour under a hurri-

cane watch which was then immediately upgraded to a hurricane warning that lasted

for two hours, the county would have been under three hours of continuous storm ad-

visories. Table 2 breaks down the storm advisory types that immediately follow each

initial storm advisory type for each set of continuous sequences of storm advisories

for each county in the sample period. These frequencies give some indication of how

the storm advisories increase or decrease in severity.

Hurricane warnings can only be downgraded, and they are most frequently down-

graded (column 4) to a tropical storm warning. Tropical storm warnings (column 2)

are most likely to end a sequence of advisories, as is shown by the 632 tropical storm

warnings that have no subsequent advisory. But in cases when the tropical storm
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warning is modified, it is almost always upgraded to a hurricane warning. These

facts suggest that tropical storm warnings should be the category consecutively lower

than the maximum-severity category of hurricane warning and suggest the following

storm-hit-probability ordering: (1) tropical storm watch, (2) hurricane watch, (3)

tropical storm warning, and (4) hurricane warning.

¿From 1995 to 2001, some level of storm advisory was given to every U.S. county

on the Atlantic or Gulf Coasts from the tip of Texas (Cameron County, Texas) to

the Northern coast of Maine (Washington County, Maine). In all, we gathered storm

advisory data for 164 U.S. counties. These counties are listed and shown in Figure 2.

In this study, we will focus on the frequency and duration of particular types of

advisories as causing a fertility effect. Table 3 details the frequency of the various

levels of noncounty-specific storm advisories in U.S. Atlantic and Gulf Coast over the

period from 1995 to 2001. The information in Table 3 is noncounty specific in the

sense that the totals are less than those of Table 2 because a single advisory can apply

to multiple counties. Aggregating advisory types across counties, Table 3 shows that

tropical storm warnings were the most common type of warning, making up about

40 percent of all storm warnings. However, hurricane watches were the second most

common, making up about 24 percent of the storm warnings. It is also worth noting

that most of the storm warnings (77 percent) occurred in the August to September

period of each year. All storm advisories in our sample occurred between June and

November as shown in Table 3.

Also of interest is the duration of storm advisories. Table 4 details these durations

in similar county-specific fashion to Table 2, although we limit the county sample to

the 47 coastal counties used in the analyses in Section 5.13 Obviously, the longer an

advisory lasts, the more likely it is to change the behavior of individuals. The NHC

data give the duration of storm advisories in minutes. Hurricane warnings last the

longest of all the storm advisories, averaging 1.1 days over the sample period. Tropical

storm warnings lasted an average of about 0.9 days, and both hurricane watches and

13The storm advisory relationships shown in Figure 4 and Tables 2 through 4 are robust to changes
in the size of the county sample.
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tropical storm watches lasted just over a half day on average. It is interesting to note

that average duration increases with storm severity in our sample.

4.2 Birth data

The U.S. birth data come from the National Vital Statistics System of the National

Center for Health Statistics (NCHS).14 The data we use cover births in the United

States from the years 1996 to 2002, as our earliest hurricane data come from 1995

and because 2002 was the most recent birth data year available.

The NCHS birth data record information on individual births in the United States.

The data are collected by NCHS from birth certificate information through coopera-

tion among counties, states, and the the national government. Included in the data is

information on the date of each child’s birth, the county where each birth took place,

the county of residence of the mother, county population measures, an estimate of

each child’s gestation period length, and various demographic characteristics of the

mother and father. In the analyses in Section 5, we aggregate births by county of

mother’s residence and by month.

Figure 3 shows the counties for which we have NCHS birth data from the 19

Atlantic and Gulf Coast States. Of the 1,180 counties in the 19 coastal states, we

have birth data on 236 counties. We do not have birth data on all counties because the

NCHS groups together all birth data in a given state from counties with a population

of less than 100,000. Of the 164 U.S. coastal counties on which we have storm data

(see Figure 2), the birth sample and storm advisory sample only overlap in 84 counties.

However, as we will discuss later, we will only be able to use 47 of the 84 counties

that have both storm and birth data because we also need to have CPS population

data on each county.

Figure 4 shows the average number of monthly births in the 47 coastal U.S. coun-

ties in our sample from 1996 to 2002, both for a given month and a given year. It

is evident from the top panel that there is an upward time trend in average yearly

14The data are available through the National Bureau of Economic Research website at
http://www.nber.org/data/vital-statistics-natality-data.html.
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county births across the years. The bottom panel shows the seasonal pattern in

monthly county births. It is clear that most births take place in the July through

October period and that the low point in monthly county births comes in February

and the surrounding months. These patterns also hold true when looking at all the

counties in the country. We will use some of the other child and parent characteristics

variables from the NCHS birth data as possible alternative outcomes to the number

of births that might be affected by storm advisories.

4.3 Combining storm advisories and births

The hypothesis we are proposing in this study is that individuals change their fertility

behavior when they experience an exogenous storm advisory. To test this hypothesis,

we must combine the NHC storm advisory data with the NCHS birth data.

The difficulty in combining the storm advisory data and the birth data stems from

the fact that neither the conception date nor the exact birth date of each child in the

birth data is known. The NCHS data only give the month, year, and day of week in

the birth month for each birth. The optimal method would be to record instances

in which a child is conceived during a storm advisory. But that cannot be done. In

addition, we must control for those who did not change their fertility behavior (i.e.,

chose not to try to conceive or did not change their fertility plan from the previous

month). To address these two difficulties, we aggregate the total number of births in

a given county and a given month in order to test whether fertility behavior changes

in response to storm advisories.

Once the births are aggregated by county and month, each observation in our

birth data set becomes a county month. From the NCHS birth data, the average

gestation time for a newborn child in our sample of U.S. Atlantic and Gulf Coast

counties is 38.7 weeks with a standard deviation of about 2.3 weeks—in line with

the standard medical expected gestation of 38 weeks. As illustrated by Figure 5, we

measure both the instance and the intensity of storm advisories around the probable

time of conception for children conceived in a given county and a given month by

aggregating the number of minutes of each storm advisory type in that county in the
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month-long period exactly 38 weeks previous to a given county birth month. With

the storm advisory data and birth data linked together in this way, we are able to

measure the effect of duration of specific types of storm advisories on fertility.15

4.4 County population characteristics

The NCHS birth data described in section 4.2 have information on children actu-

ally born in the United States and on their parents. But in order to estimate the

effect of storm advisories on fertility behavior, we must also control for the county

level demographic characteristics. First, we control for the population size of each

county by using the county population variable of the mother’s county of residence

as a control variable in our analyses. Because the NCHS data only break county

population into four categories, we include these categories as indicator variables in

our estimation methods. Table 5 shows the distribution of county populations for

our 47 counties over our 7 year period. Nearly 40 percent of our counties in a given

month have populations of between 100,000 and 250,000.16 However, just over 40

percent of the counties in a given month have populations between 250,000 and 1

million. And nearly 20 percent of our counties in a given month have populations of

1 million or above. Second, we must observe the entire population—both those who

change their fertility behavior and those who do not. We use the Current Population

Survey (CPS) for this purpose.

Only 47 counties out of the 84 that had both storm data and birth data were

represented in the CPS sample. Figure 6 shows the counties represented in our final

sample—counties for which we have storm advisory data, birth data, and population

data. The CPS county population data correspond to the time period of the storm

advisory data in order to control for population conditions at the time of probable

child conception. However, our estimation results in section 5 do not change if we

15People might migrate after a hurricane hit. This will affect the birth count if the mother has the
child at another place after the hurricane hit. Unfortunately, our data do not allow us to control for
potential bias resulting from migration. However, the direction of bias is ambiguous, even if there
is net emigration, since we do not know who migrate.

16Remember that, for all counties in a state with a population of less than 100,000, the NCHS
pools all the data into one category. So our smallest population category begins at 100,000.
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leave out the CPS population controls in order to increase our sample size of counties.

Table 6 shows the descriptive statistics of the CPS county population variables

from the 47 counties represented in our final sample from Figure 6. For most of

the male and female statistics, we used age ranges representing years of generally

accepted positive fertility—men age 16 and above and women between the ages of 16

and 40. We also included the county monthly births variable from the birth data for

comparison.

5 Estimation

In this section, we estimate the effect of storm advisories on fertility. First, we esti-

mate the short-term fertility effect of these advisories. That is, we estimate whether

storm advisories affect the number of births nine months after the advisory. Then, we

try to determine whether any of these fertility effects are permanent or whether they

are merely transitory. Lastly, we present some results of whether there is a systematic

difference between the infants conceived during an advisory and the ones not.

5.1 Fertility effect

To estimate the fertility effect of storm advisories, we use a random-effects model

of the form in equation (1).17 The dependent variable is the log of the number of

births in a particular county i for a particular month t. The first four terms on the

right-hand side of equation (1) are duration variables that represent the number of

storm-advisory-type days for each level of storm advisory in the conception period

corresponding to the birth month (as described in Section 4.3 and in Figure 5) for a

particular county. The county month population-characteristics variables from Table

6 are included in the vector X as well as county population dummies as shown in

17We conducted Hausman specification tests on all our specifications of this model to determine
the appropriateness of using random-effects models over fixed-effect models. In all the tests, we could
not reject the null hypothesis that the estimates from the two specifications were equivalent (p-values
greater than 0.99), so we use a random-effects econometric model. The estimated coefficients in the
two models were equivalent to the third decimal point in most specifications.
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Table 5.18

lnbirthsi,t = β0 + β1tswatchdaysi,t + β2hwatchdaysi,t + β3tswarndaysi,t + ...

β4hwarndaysi,t + βX +
Dec∑

mth=Feb

γmthmtht + αt + θi + ui,t (1)

The γ terms represent a full set of eleven monthly indicator variables, which allow

us to control for the seasonality in the birth data as evidenced in the lower pane of

Figure 4. We also include a time trend t to control for the increasing population

growth shown in the upper pane of Figure 4 as well. The θi term represents county

fixed effects. We assume that the error term ui,t satisfies the standard assumptions

of the unobserved heterogeneity model and is normally distributed.

In order to more easily interpret our results, we have changed the unit of measure

of storm advisory duration from minutes to days. So the storm-advisory coefficients

in our analysis represent the the effect of an extra 24 hours of particular types of

advisories on the percentage change in a specific county’s number of births nine

months later. Our results for various specifications of equation (1) are shown in

Tables 7 and 8.

Table 7 shows our baseline specification in which all four storm-advisory types are

included separately: tropical storm watches, hurricane watches, tropical storm warn-

ings, and hurricane warnings. We test the robustness of this model by estimating it

using both fixed-effects and random-effects econometric models. The Hausman spec-

ification test rejects the hypothesis that the two sets of coefficients are significantly

different, so we use the random effects model in the rest of our estimations.

In Table 8, we make the random-effects model with all four storm advisory types

our baseline specification and also test specifications with various aggregations of the

storm advisory measures. Specification 1 in Table 8 is our baseline specification. In

it, we estimate the effect of each type of storm advisory separately.

The first result that stands out in Table 8 is that the estimated fertility effect

18We also tested a linearly interpolated county population measure taken from the U.S. Census
Bureau, and our results did not change.
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from storm advisories decreases monotonically from positive to negative as advisory

severity increases. This finding is strikingly robust across all specifications in both

Table 8 and Table 9. In all cases, the point estimate for the fertility effect of a tropical

storm or hurricane watch is positive while the effect of a tropical storm or hurricane

warning is negative. For example, the interpretation of the coefficients from the

baseline specification in the first column is that an extra 24 hours of tropical storm

watches results in an average increase in births nine months later of just over 2.1

percent, and an extra 24 hours of hurricane warnings results in an average decrease

in births of 2.2 percent. Given that the average number of monthly births in our

sample of coastal counties is 746, these affects mean an increase or decrease of about

16 births nine months later.

Also note that the estimated fertility effects are statistically significant at the

severity extremes. In the first three specifications of Table 8, the low severity and

high severity warnings are all significant.19 We can characterize these results as

conservative estimates given that our unit of observation is an entire county and that

the fertility effect of a storm advisory should dissipate as one looks further inland in a

county. Our estimated positive fertility effect of tropical storm watches adds support

to the media reports cited in Section 1.

Specifications 4 and 5 are important because they represent aggregations of sever-

ity that confound the effects. Statistical, as well as economic, significance is lost in

both specifications. This could be one reason why studies that do not have shocks

with multiple severity levels, such as Udry (1970), find no fertility effect. Severity

aggregation washes out the underlying fertility effects.

As was mentioned in Section 2, Rodgers, St. John, and Coleman (2005) found

a positive fertility effect resulting from a high-severity shock—the Oklahoma City

bombing. One interpretation that might harmonize these results is that catastrophes

that do not result in mass evacuations, but rather force people to stay at home, have

the potential for a positive fertility effect. Low level storm advisories are generally

19The coefficient on tropical storm watch days in specification 3 has a p-value of 0.105, making it
nearly significant at the 10 percent level.
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associated with riding the storm out at one’s residence while higher severity advisories

are more associated with evacuations.

In Table 9 we perform the same regression from Table 8 specification 1, but we

change the dependent variable to the log of firstborn births in a given county and

the log of non-firstborn births. An interesting result emerges. Couples who have not

have any children have a more inelastic demand for children than those who have

already had at least one child—at least in response to catastrophic shocks. On the

sample of county monthly firstborn children, none of the storm advisory coefficients

is either large or statistically significant. But note that the monotonically decreasing

fertility effect is preserved in the point estimates. However, when using the sample

of non-firstborn children, all of the coefficients become statistically significant. We

conclude that most of the fertility effect comes from couples who already have at least

one child. We interpret this to mean that the timing of a first child is less flexible

than the timing of non-firstborn children.

5.2 Permanent fertility effect

The fertility effect described in section 5.1 could arise from either a change in the

timing of a birth or a change in total lifetime fertility. If a storm advisory only

prompts individuals who were already planning to have a child to conceive either

earlier or later, then the fertility effect is a transitory and short-term effect. However,

if the storm advisory prompts individuals to increase their total number of children

over their lifetime, then the fertility effect is permanent.

We test whether the fertility effect of storm advisories is permanent or transitory

by estimating a random-effects model with the same independent variables as in

equation (1) but with the dependent variable being the log of total births in a county

for a rolling period of a certain long-term duration. Table 10 shows the estimated

coefficients on the four storm-advisory-types on births for three years, four years, and

five years starting nine months after the storm advisory.20

20However, we must admit that this approach has a caveat and will likely result in an upward
biased estimate. For example, on June 9, 1999, we have an advisory, and on August 12, 2001, we
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In the three-year specification, hurricane watches and hurricane warnings have a

nearly equal and opposite long-run fertility effect that is significant at the 10-percent

level—hurricane watches increase a county’s births by just under one percent over

the following three-year period and hurricane warnings decrease the county births

by about the same percentage. The pattern is similar over the four year horizon,

but expectedly dissipates over the five-year horizon.21 In Table 11 we separate the

sample into county first births and county non-first births, and we find no material

differences from the total births permanent effects in Table 10.

In summary, we have weak evidence that hurricane warnings have a negative long-

term fertility effect. This result is similar to but considerably weaker than the findings

of Lindstrom and Berhanu (1999), Pörtner (2006), and Rodgers, St. John, and Cole-

man (2005), all of whom find a significant long-term fertility effect. Compared to a

terrorists attack or famine and war, except some extreme cases, a high-severity storm

may be less likely to have profound impacts on people physically and mentally and is

less likely to permanently alter their taste for children. Other things equal, a catas-

trophe will also be likely to have a larger and more long-term effect on the fertility

behavior of individuals in low income economies without functioning insurance mar-

kets. Because, in developed countries such as the United States, fertility is unlikely

to be used as an insurance mechanism to smooth the risk.

5.3 Characteristics of newborns and their parents

If a fertility effect from storm advisories does exist, as we have found in this section,

then knowing something about the parents of these children born after storm advi-

sories would tell us which groups are affected more or less by this type of shock. It is

also interesting to compare the characteristics of infants conceived during an advisory

have another advisory, our estimates based on the birth counts in a three-year interval not only
reflect long-term effect of advisory on June 9, 1999, but also are contaminated by a short-term effect
of the advisory on August 12, 2001. Our approach cannot distinguish between these two effects.
The results presented here, therefore, represent an upper bound of a long-term effect.

21We do not show the one- and two-year horizons because parents must wait at least nine months
to have another child and often wait more than that. So the one- and two-year horizons predictably
show an opposite pattern of the results from the three- and four-year specifications in Table 10.
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to the ones not conceived during an advisory.

As we described in section 4.2, the NCHS birth data record information on the

mother, father, and baby, in addition to the fact that the child was born. We tabu-

lated the means and standard deviations of those individual characteristics by various

groupings. These tabulations are in Tables 12 and 13. Table 12 divides the parents

into two groups—those who gave birth to a child conceived during a storm advisory

and those gave birth to a child who was not conceived during an advisory. Table

13 further divides those parents who gave birth to a child conceived during an advi-

sory into four groups according to the severity of the advisory. The two tables show

there is no systematic difference between the infant’s characteristics, such as gestation

period, gender, birth-weight and Agpar score,22 no matter whether an infant is con-

ceived during an advisory or not, or conceived during different severity of advisory.23

From the standard deviations in Tables 12 and 13, it is clear that a standard t-test

rejects that the means for any category across different conception circumstances are

statistically different from each other. The biggest difference however seems to be

that the percent of firstborn children in Table 12 conceived during a storm advisory

is slightly less than the percent of firstborn children not conceived during a storm

advisory.

For the parents’ characteristics, the only notable difference is between character-

istics categories in the race variables. Hispanic mothers and fathers are less likely to

conceive a child during an advisory and are less likely to conceive a child during a

hurricane watch, which is the highest level of advisory. However, these findings are

not statistically significant.

22The agpar score is an assessment of a newborn’s adjustment to life immediately after birth. Five
criteria are evaluated: heart rate, breathing rate, color, muscle tone and reflexes. The child is scored
at one minute and 5 minutes after birth.

23Angrist and Evans (1999) and Pop-Eleches (2006) argue and show that unplanned birth can
conflict long-term educational and labor market plans of a mother, which can result to a negative
effect on the child. Our results here cannot be used to test whether the babies conceived during an
advisory are likely to be unplanned births or not, since realization of the effect in Angrist and Evans
(1999) and Pop-Eleches (2006) need to take time.
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6 Conclusion

Using rich panel data with a large sample of multiple-severity shocks, we find support

for the anecdotal evidence from the media that storm advisories produce a positive

fertility effect. However, our results give a much more detailed picture of how the

fertility effect changes with storm advisory severity and even what types of couples

are responsible for most of the changes in fertility.

We find that a positive and significant fertility effect is associated with the lowest

level of storm advisory, tropical storm watches. But we find that the estimated

fertility effect decreases monotonically from positive to negative as the storm advisory

severity increases. A significant negative fertility effect is associated with the most

severe advisory level, hurricane warnings.

In addition, we find that most of this fertility effect, both with low and high

severity advisories, comes from couples who have had at least one child previously.

This suggests that the elasticity of demand for children is relatively inelastic for first

children but becomes more elastic after couples have their first child.

We also test whether this negative effect is transitory or permanent, and our

study provides slight evidence that the fertility effect of hurricane warnings has a

long-term effect on the number of births in a county. Lastly, when comparing the

infants conceived during an advisory to the ones who were not, we find that their

characteristics are not systemically different and neither are those of their parents.
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Figure 1: Storm advisory severity matrix
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Figure 2: U.S. Atlantic and Gulf Coast counties (164) in storm sample:
1995 to 2001

coastal counties (134)
slightly inland counties (30)
not in sample
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  Ascension Plaquemines   Fort Bend Orange 
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Figure 3: U.S. Atlantic and Gulf Coast counties (236) in birth data sample:
1996 to 2002

birth sample only (152)
both storm and birth samples (84)
not in sample

 
Atlantic and Gulf Coast U.S. counties in birth sample 

(Bold counties are also in the storm sample) 
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FLORIDA   Cumberland Pitt Dallas Nueces 
Alachua Manatee MISSISSIPPI Davidson Randolph Denton Smith 
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Collier Palm Beach Merrimack Strafford PENNSYLVANIA Harris Williamson 
Miami-Dade Pasco   Allegheny Lackawanna   
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Lake Seminole Camden Morris Butler Lycoming Henrico Norfolk City 
Lee Volusia Cumberland Ocean Cambria Mercer Prince William Portsmouth 
Leon  Essex Passaic Centre Montgomery Alexandria     City 
  Gloucester Somerset Chester Northampton    City Richmond City 

GEORGIA Hudson Sussex Cumberland Philadelphia Chesapeake Virginia Beach 
Bibb Fulton Hunterdon Union Dauphin Schuylkill    City    City 
Chatham Gwinnett   Delaware Washington   
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Figure 4: Average monthly county births in Atlantic and Gulf
Coast U.S. by month and year: 47 counties, 1996-2002
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Figure 5: Correspondence between births per month and duration of
storm advisories: example Mobile County, Alabama
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Figure 6: U.S. Atlantic and Gulf Coast counties (47) in final sample

storm, birth, and population sample (47)
not in sample

 
Atlantic and Gulf Coast U.S. counties in final sample 
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Table 1: Definitions of Storm Advisory Types

Tropical storm watch: An announcement for specific coastal areas that tropical
storm conditions (sustained winds within the range of 34
to 63 kt, 39 to73 mph, or 63 to 118 km/hr) are possible
within 36 hours.

Tropical storm warning: A warning that sustained winds within the range of 34 to
63 kt, 39 to 73 mph, or 63 to 118 km/hr associated with a
tropical cyclone are expected in a specified coastal area
within 24 hours or less.

Hurricane watch: An announcement for specific coastal areas that hurricane
conditions (sustained winds 64 kt, 74 mph, or 119 km/hr
or higher) are possible within 36 hours.

Hurricane warning: A warning that sustained winds 64 kt, 74 mph, or 119
km/hr or higher associated with a hurricane are expected
in a specified coastal area in 24 hours or less. A
hurricane warning can remain in effect when dangerously
high water or a combination of dangerously high water and
exceptionally high waves continue, even though winds may
be less than hurricane force.

Source: National Hurricane Center of the U.S. National Weather Service
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Table 2: Frequency of consecutive county-specific advisory type pairs by
initial advisory type: 164 counties 1995-2001

Initial advisory type
Subsequent Tropical Tropical Hurricane Hurricane

advisory type storm watch storm warning watch warning
Tropical storm watch • 7 0 8
Tropical storm warning 191 • 168 191
Hurricane watch 24 24 • 10
Hurricane warning 14 133 232 •
No subsequent advisory 71 632 134 238
No previous advisory 285 246 476 68
Singleton advisory 56 215 108 43
Total 300 796 534 447
* The values in the bottom row, entitled “Total”, represent the total number of separate occurrences of the given

storm advisory type across all months and all counties. It is the sum of the first five rows: Tropical storm watch
+ Tropical storm warning + Hurricane watch + Hurricane warning + No subsequent advisory.

Table 3: Frequency of Noncounty-specific Storm Advisories by
Month: 1995-2001

Number of advisories
Advisory Type Total Jun. Jul. Aug. Sep. Oct. Nov.

Tropical storm watch 36 2 2 11 17 4 0
Hurricane watch 55 0 5 17 26 9 0
Tropical storm warning 90 2 7 30 41 10 2
Hurricane warning 45 0 6 16 17 7 0
Total 226 4 20 74 101 30 2

Source: Authors’ own calculation based on data from the National Hurricane Center of the U.S.
National Weather Service.

Table 4: Duration (in Days) of County-specific Storm Advi-
sories: 47 counties, 1995-2001

Total Avg. Std.
Advisory type advisories duration dev. Min. Max.

Tropical storm watch 85 0.61 0.46 0.17 2.25
Hurricane watch 156 0.69 0.42 0.13 2.00
Tropical storm warning 259 0.85 0.48 0.13 3.13
Hurricane warning 97 1.08 0.50 0.25 2.25
Total 597 0.81 0.49 0.13 3.13

Source: Authors’ own calculation based on data from the National Hurricane Center of the
U.S. National Weather Service.
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Table 5: Distribution of county population:
47 counties, 75 months, 1995-2001

Population Category Frequency Percent
100,000 to 250,000 1,350 38.3
250,000 to 500,000 750 21.3
500,000 to 1 million 750 21.3
1 million and above 675 19.1
Total 3,525 100.0

Source: Authors’ own calculation from the NCHS birth data.

Table 6: Summary statistics of CPS monthly county-specific
population data: 1995 to 2001 (47 counties, 75
months, 3,525 county months)

County-month variables Meana Std. Dev.
Total monthly birthsb 746.7 738.0
Avg. age of all males 36.2 5.4
Avg. age of all females 38.8 5.3
Avg. years of education for males (age 16 and up) 13.1 0.8
Avg. years of education for females (age 16 to 40) 13.1 0.8
Percent of women married (age 16 to 40) 0.445 0.141
Unemployment rate 0.051 0.037
Avg. number of children per household 0.60 0.220
Percent white males (age 16 and up) 0.820 0.160
Percent white females (age 16 to 40) 0.761 0.179
Avg. household income 44,605 13,799
a Mean values actually represent averages of averages because the data were first aggregated

by county and month. For example, average age of males represents the average male age of
all the monthly county average male age data points we had.

b The total births variable comes from the NHVS birth data, not from the CPS, and corresponds
to Figure 4.
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Table 7: Effect of storm advisory days on the log of
monthly county births nine months later:
FE vs. RE (1995 to 2002)

Ind. variablesa Econometric method
(duration in days) Fixed effects Random effects

Tropical storm watch 0.021* 0.021*
(0.012) (0.012)

Hurricane watch 0.010 0.010
(0.008) (0.009)

Tropical storm warning -0.003 -0.003
(0.006) (0.006)

Hurricane warning -0.022** -0.022**
(0.008) (0.008)

F (df1,df2) 62.84
χ2(df) 1,907.91
Observations 3,525 3,525
Counties (I) 47 47
Months (T ) 75 75
Hausman χ2(df) 1.01
a Each specification also includes monthly indicator variables, a time trend, and

population characteristics from the CPS as detailed in section 4.4.
* Significant at the 10-percent level.
** Significant at the 5-percent level.
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Table 8: Random-effects estimates of storm advisory days on the log of
monthly county births nine months later: 1995 to 2002

Ind. variablesa Specification
(duration in days) 1 2 3 4 5

Tropical storm watch 0.021* 0.019
(0.012) (0.012)

Hurricane watch 0.010
(0.009)

Tropical storm warning -0.003
(0.006)

Hur. watch + trop. storm warning 0.002
(0.004)

Hurricane warning -0.022** -0.020**
(0.008) (0.008)

Trop. storm watch + hur. watch 0.013*
(0.007)

Trop. storm warning + hur. warning -0.009**
(0.004)

Trop. storm watch + trop. storm warning 0.004
(0.004)

Hur. watch + hur. warning -0.007
(0.005)

Trop. storm watch + trop. storm warning -0.001
+ hur. watch + hur. warning (0.003)

χ2(df) 1,907.91 1,918.48 1,914.73 1,914.22 1,919.66
Observations 3,525 3,525 3,525 3,525 3,525
Counties (I) 47 47 47 47 47
Months (T ) 75 75 75 75 75
a Each specification also includes monthly indicator variables, a time trend, and population characteristics from the CPS as

detailed in section 4.4.
* Significant at the 10-percent level.
** Significant at the 5-percent level.
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Table 9: Effect of storm advisory days on the
log of monthly county births of first-
born children and non-firstborn chil-
dren nine months later: 1995 to 2002

Ind. variablesa Sample
(duration in days) Firstborn Non-firstborn

Tropical storm watch 0.015 0.025*
(0.016) (0.015)

Hurricane watch -0.001 0.018*
(0.012) (0.011)

Tropical storm warning -0.005 -0.001
(0.008) (0.007)

Hurricane warning -0.011 -0.028**
(0.011) (0.010)

χ2(df) 1,169.62 1,361.48
Observations 3,525 3,525
Counties (I) 47 47
Months (T ) 75 75
a Each specification also includes monthly indicator variables, a time

trend, and population characteristics from the CPS as detailed in sec-
tion 4.4.

* Significant at the 10-percent level.
** Significant at the 5-percent level.
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Table 10: Random-effects estimates of storm
advisory days on the log of long du-
ration county births beginning nine
months later: 1995 to 2002

Log of long-term
Ind. variablesa total births

(duration in days) 5 yrs. 4 yrs. 3 yrs.
Tropical storm watch 0.004 0.011 0.001

(0.008) (0.012) (0.006)
Hurricane watch -0.001 0.004 0.009**

(0.002) (0.003) (0.003)
Tropical storm warning -0.000 0.001 0.001

(0.002) (0.003) (0.002)
Hurricane warning -0.001 -0.006* -0.007**

(0.002) (0.003) (0.003)

χ2(df) 585.94 937.28 1,532.74
Observations 893 1,457 2,021
Counties (I) 47 47 47
Avg. months (T ) 19 31 43
a Each specification also includes monthly indicator variables, a time

trend, and population characteristics from the CPS as detailed in
section 4.4.

* Significant at the 10-percent level.
** Significant at the 5-percent level.
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Table 11: Random-effects estimates of storm advisory days on the log
of long duration county births for firstborn and non-firstborn
children beginning nine months later: 1995 to 2002

Log of long-term total births:
Ind. variablesa Firstborn Non-firstborn

(duration in days) 5 yrs. 4 yrs. 3 yrs. 5 yrs. 4 yrs. 3 yrs.
Tropical storm watch 0.005 0.010 -0.007 0.003 0.010 0.005

(0.007) (0.013) (0.007) (0.009) (0.014) (0.007)
Hurricane watch -0.000 0.002 0.008** -0.002 0.005 0.008**

(0.002) (0.003) (0.004) (0.002) (0.003) (0.004)
Tropical storm warning -0.001 0.000 0.001 -0.000 0.002 0.001

(0.002) (0.003) (0.002) (0.002) (0.004) (0.003)
Hurricane warning -0.002 -0.007** -0.008** -0.000 -0.006 -0.006*

(0.002) (0.004) (0.003) (0.003) (0.004) (0.004)

χ2(df) 481.24 702.85 1,121.18 590.96 920.21 1,483.45
Observations 893 1,457 2,021 893 1,457 2,021
Counties (I) 47 47 47 47 47 47
Months (T ) 19 31 43 19 31 43
a Each specification also includes monthly indicator variables, a time trend, and population characteristics

from the CPS as detailed in section 4.4.
* Significant at the 10-percent level.
** Significant at the 5-percent level.
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Table 12: Means (and standard deviations) of individual
characteristics from birth sample by whether or
not conceived under storm advisory: 47 counties,
1996 to 2002

Conceived Not
Individual Whole during Conceived

Characteristic sample advisory dur. adv.
Newborns: gestation period 38.74 38.71 38.74

in weeks (2.68) (2.73) (2.67)

percent male 0.5121 0.5116 0.5121
(0.4999) (0.4999) (0.4999)

birthweight 3,280.4 3,285.7 3,280.0
in grams (610.5) (615.5) (610.1)

children per birth 1.035 1.034 1.035
(twins, etc.) (0.197) (0.195) (0.197)

Apgar score 8.964 8.947 8.965
(range: 1 - 10) (0.711) (0.731) (0.710)

percent 0.420 0.414 0.420
firstborn (0.494) (0.492) (0.494)

Mothers: mother’s age 27.96 27.74 27.97
in years (6.30) (6.26) (6.30)

hispanic mothers 0.261 0.232 0.263
(0.439) (0.422) (0.440)

white mothers 0.684 0.707 0.683
(0.465) (0.455) (0.465)

mother’s education 12.88 12.91 12.87
in years (2.81) (2.73) (2.82)

married mothers 0.624 0.634 0.623
(0.485) (0.482) (0.485)

Fathers: father’s age 31.46 31.26 31.48
in years (7.01) (6.97) (7.01)

hispanic fathers 0.242 0.209 0.244
(0.428) (0.406) (0.429)

white fathers 0.725 0.749 0.723
(0.447) (0.434) (0.447)
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Table 13: Means (and standard deviations) of individual charac-
teristics from birth sample by type of storm advisory
conceived under: 47 counties, 1996 to 2002

Conceived during:
Individual Tropical storm Hurricane Tropical storm Hurricane

Characteristic watch watch warning warning
Newborns: gestation period 38.74 38.69 38.71 38.72

in weeks (2.74) (2.74) (2.72) (2.77)

percent male 0.5119 0.5122 0.5112 0.5111
(0.4999) (0.4999) (0.4999) (0.4999)

birthweight 3,292.9 3,285.8 3,285.9 3,295.4
in grams (612.9) (617.8) (615.6) (616.8)

children per birth 1.035 1.032 1.034 1.031
(twins, etc.) (0.196) (0.189) (0.194) (0.184)

Apgar score 8.934 8.931 8.944 8.918
(range: 1 - 10) (0.722) (0.733) (0.730) (0.705)

percent 0.412 0.412 0.413 0.415
firstborn (0.492) (0.492) (0.492) (0.493)

Mothers: mother’s age 27.83 27.48 27.77 27.18
in years (6.28) (6.23) (6.28) (6.22)

hispanic mothers 0.226 0.217 0.233 0.220
(0.418) (0.412) (0.423) (0.414)

white mothers 0.705 0.707 0.711 0.741
(0.456) (0.455) (0.453) (0.438)

mother’s education 12.95 12.89 12.92 12.86
in years (2.75) (2.68) (2.73) (2.63)

married mothers 0.637 0.631 0.635 0.641
(0.481) (0.483) (0.482) (0.480)

Fathers: father’s age 31.32 31.04 31.28 30.71
in years (6.97) (6.98) (6.99) (6.99)

hispanic fathers 0.202 0.194 0.208 0.197
(0.401) (0.395) (0.406) (0.397)

white fathers 0.745 0.754 0.752 0.788
(0.436) (0.430) (0.432) (0.409)
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APPENDIX

A-1 Storm Advisory Data Description

Our storm advisory data come from the National Hurricane Center (NHC) of the
United States National Weather Service. The data were taken from the NHC web
site at http://www.nhc.noaa.gov/pastall.shtml. The NHC has readily available
information on each named storm from 1995 on. The information on storms before
1995 is more sparse. Our storm data only cover the period from 1995 to 2001 because
the data before 1995 were not posted publicly and we do not have birth data beyond
2002. However, the NHC storm data is usually up to date up to one-month previous
to the current date.

Included in the summary of each named storm is a table entitled some variant of
“watch and warning summary.” The watch and warning summary tables list the date
and time in which an advisory was issued, the type of advisory, and the geographic
area to which the advisory applied.

One problem with these tables is that the geographic range of a specific advisory
was is often described in terms of cities or geographic features rather than affected
counties. So an important step in gathering this data was carefully going through each
storm advisory description in the watch and warning summary tables and mapping
them into affected county terms. In doing this, we found that the geographical and
city descriptions almost always corresponded to county boundaries.

Although tropical storms and hurricanes can affect inland areas, we chose to focus
only on coastal counties. However, we did include some “slightly inland” counties in
our study. These “inland” counties are not separated from the coast by more than one
county and, for the most part, come from the Houston and New Orleans areas. Their
inclusion in the study comes from their membership in a large coastal metropolitan
statistical area (MSA) that is often the recipient of the storm advisories studied in
this paper. In the broad sample of 164 counties for which we had storm advisory
data, 30 counties were characterized as being “slightly inland”. Figure 2 shows the
counties in the hurricane sample and highlights those designated as slightly inland.
Of the subsample of 84 counties for which we had both birth data and storm advisory
data, only 14 were “slightly inland”.
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